
Einleitung:
Anleitung
• Öffne ChatGPT und sag: „Canvas: Erstelle eine neue

HTML-Datei.“
• Füge den kompletten Code in die Datei ein.
• Speichern – die Canvas zeigt dir sofort die Vorschau.
• Klicken, um zu spielen: Figur wählen → Zielfeld

klicken.
Code kopieren:
Den Code findest du hier:

Der Schach Landesverband OÖ informiert

Hinweis: Dieser Beitrag stellt keine Empfehlung dar, sondern spiegelt ausschließlich eine unverbindliche Einschätzung
wider. Es besteht keinerlei geschäftliche oder organisatorische Verbindung zu dem genannten Produkt. Der Schach-

Landesverband Oberösterreich übernimmt keine Haftung für etwaige Folgen oder Schäden.

Schach Use Case für ChatGPT:
Schach Spiel in ChatGPT selber programmieren

<!DOCTYPE html>
<html lang="de">
<head>
 <meta charset="UTF-8" />
 <title>Schachspiel</title>
 <style>
 body {
 display: flex;
 flex-direction: column;
 align-items: center;
 justify-content: center;
 margin: 0;
 padding: 0;
 font-family: sans-serif;
 }

 h1 {
 margin-top: 1rem;
 margin-bottom: 0.5rem;
 }

 #status {
 font-size: 1.2rem;
 margin-bottom: 1rem;
 padding: 0.5rem 1rem;
 border-radius: 8px;
 background-color: #f2f2f2;
 }

 #board {
 display: grid;
 grid-template-columns: repeat(8, 60px);
 grid-template-rows: repeat(8, 60px);
 gap: 0;
 border: 2px solid #333;
 }

 .cell {
 width: 60px;
 height: 60px;
 display: flex;
 align-items: center;
 justify-content: center;
 font-size: 3rem;
 cursor: pointer;
 user-select: none;
 }

 /* Hintergrundfarben, aber keine Font-Farbe: */
 .black-cell {
 background-color: #b58863;
 }

 .white-cell {

 background-color: #f2d9b1;
 }

 .highlight {
 outline: 3px solid rgba(255, 255, 0, 0.7);
 outline-offset: -3px;
 }

 .turn-indicator {
 font-weight: bold;
 color: #e60000;
 }

 #container {
 margin: 1rem;
 text-align: center;
 }

 </style>
</head>
<body>
 <h1>Schachspiel für 2 Spieler</h1>
 <div id="status"></div>
 <div id="board"></div>

 <script>
♙ ♖ ♜♟ // Unicode-Bauern (Weiß , Schwarz), Türme (Weiß , Schwarz),

♘ ♞ ♗ ♝ // Springer (Weiß , Schwarz), Läufer (Weiß , Schwarz),
♕ ♛ ♔ ♚ // Dame (Weiß , Schwarz), König (Weiß , Schwarz)

 let boardState = [];
 let whiteToMove = true; // true = Weiß am Zug, false = Schwarz am Zug
 let selectedCell = null; // zuletzt angeklickte Zelle
 let possibleMoves = []; // Liste von Zellen (row,col), auf die gezogen
werden kann
 let gameOver = false;

 // Unicode-Mapping für die Figuren
 const pieceToUnicode = {

♙ 'Pw': ' ', // Weißer Bauer
♟ 'Pb': ' ', // Schwarzer Bauer
♖ 'Rw': ' ', // Weißer Turm
♜ 'Rb': ' ', // Schwarzer Turm
♘ 'Nw': ' ', // Weißer Springer
♞ 'Nb': ' ', // Schwarzer Springer
♗ 'Bw': ' ', // Weißer Läufer
♝ 'Bb': ' ', // Schwarzer Läufer
♕ 'Qw': ' ', // Weiße Dame
♛ 'Qb': ' ', // Schwarze Dame
♔ 'Kw': ' ', // Weißer König
♚ 'Kb': ' ' // Schwarzer König

 };

 // Standard-Setup

 function initBoard() {
 const initial = [
 [{type:'R', color:'b'},{type:'N', color:'b'},{type:'B',
color:'b'},{type:'Q', color:'b'},{type:'K', color:'b'},{type:'B',
color:'b'},{type:'N', color:'b'},{type:'R', color:'b'}],
 [{type:'P', color:'b'},{type:'P', color:'b'},{type:'P',
color:'b'},{type:'P', color:'b'},{type:'P', color:'b'},{type:'P',
color:'b'},{type:'P', color:'b'},{type:'P', color:'b'}],
 [null,null,null,null,null,null,null,null],
 [null,null,null,null,null,null,null,null],
 [null,null,null,null,null,null,null,null],
 [null,null,null,null,null,null,null,null],
 [{type:'P', color:'w'},{type:'P', color:'w'},{type:'P',
color:'w'},{type:'P', color:'w'},{type:'P', color:'w'},{type:'P',
color:'w'},{type:'P', color:'w'},{type:'P', color:'w'}],
 [{type:'R', color:'w'},{type:'N', color:'w'},{type:'B',
color:'w'},{type:'Q', color:'w'},{type:'K', color:'w'},{type:'B',
color:'w'},{type:'N', color:'w'},{type:'R', color:'w'}]
];
 boardState = initial;
 }

 function onBoard(r, c){
 return (r >= 0 && r < 8 && c >= 0 && c < 8);
 }

 function generateMoves(row, col, board = boardState) {
 const piece = board[row][col];
 if(!piece) return [];
 const {type, color} = piece;
 const directions = [];
 const moves = [];

 function sameColor(r, c){
 return board[r][c] && board[r][c].color === color;
 }

 switch(type){
 case 'P': // Bauer
 if(color==='w') {
 if(onBoard(row-1, col) && !board[row-1][col]) {
 moves.push({r: row-1, c: col});
 if(row===6 && !board[row-2][col]) {
 moves.push({r: row-2, c: col});
 }
 }
 if(onBoard(row-1, col-1) && board[row-1][col-1] &&
board[row-1][col-1].color==='b') {
 moves.push({r: row-1, c: col-1});
 }
 if(onBoard(row-1, col+1) && board[row-1][col+1] &&
board[row-1][col+1].color==='b') {
 moves.push({r: row-1, c: col+1});
 }

 } else {
 if(onBoard(row+1, col) && !board[row+1][col]) {
 moves.push({r: row+1, c: col});
 if(row===1 && !board[row+2][col]) {
 moves.push({r: row+2, c: col});
 }
 }
 if(onBoard(row+1, col-1) && board[row+1][col-1] &&
board[row+1][col-1].color==='w') {
 moves.push({r: row+1, c: col-1});
 }
 if(onBoard(row+1, col+1) && board[row+1][col+1] &&
board[row+1][col+1].color==='w') {
 moves.push({r: row+1, c: col+1});
 }
 }
 break;
 case 'R': // Turm
 directions.push({dr:1, dc:0}, {dr:-1, dc:0}, {dr:0, dc:1}, {dr:0,
dc:-1});
 directions.forEach(dir => {
 let r = row + dir.dr;
 let c = col + dir.dc;
 while(onBoard(r, c)) {
 if(!board[r][c]) {
 moves.push({r, c});
 } else {
 if(!sameColor(r, c)) {
 moves.push({r, c});
 }
 break;
 }
 r += dir.dr;
 c += dir.dc;
 }
 });
 break;
 case 'N': // Springer
 const knightMoves = [
 {r: row+2, c: col+1},
 {r: row+2, c: col-1},
 {r: row-2, c: col+1},
 {r: row-2, c: col-1},
 {r: row+1, c: col+2},
 {r: row+1, c: col-2},
 {r: row-1, c: col+2},
 {r: row-1, c: col-2}
];
 knightMoves.forEach(m => {
 if(onBoard(m.r, m.c) && (!board[m.r][m.c] || !sameColor(m.r, m.c)))
{
 moves.push({r: m.r, c: m.c});
 }
 });

 break;
 case 'B': // Läufer
 directions.push({dr:1, dc:1}, {dr:1, dc:-1}, {dr:-1, dc:1}, {dr:-1,
dc:-1});
 directions.forEach(dir => {
 let r = row + dir.dr;
 let c = col + dir.dc;
 while(onBoard(r, c)) {
 if(!board[r][c]) {
 moves.push({r, c});
 } else {
 if(!sameColor(r, c)) {
 moves.push({r, c});
 }
 break;
 }
 r += dir.dr;
 c += dir.dc;
 }
 });
 break;
 case 'Q': // Dame
 directions.push(
 {dr:1, dc:0}, {dr:-1, dc:0}, {dr:0, dc:1}, {dr:0, dc:-1},
 {dr:1, dc:1}, {dr:1, dc:-1}, {dr:-1, dc:1}, {dr:-1, dc:-1}
);
 directions.forEach(dir => {
 let r = row + dir.dr;
 let c = col + dir.dc;
 while(onBoard(r, c)) {
 if(!board[r][c]) {
 moves.push({r, c});
 } else {
 if(!sameColor(r, c)) {
 moves.push({r, c});
 }
 break;
 }
 r += dir.dr;
 c += dir.dc;
 }
 });
 break;
 case 'K': // König
 for(let dr=-1; dr<=1; dr++) {
 for(let dc=-1; dc<=1; dc++) {
 if(dr===0 && dc===0) continue;
 let r = row+dr;
 let c = col+dc;
 if(onBoard(r,c) && (!board[r][c] || !sameColor(r,c))) {
 moves.push({r, c});
 }
 }
 }

 break;
 }

 return moves;
 }

 function onCellClick(e) {
 if(gameOver) return;

 const cell = e.target;
 const row = parseInt(cell.getAttribute('data-row'));
 const col = parseInt(cell.getAttribute('data-col'));
 const piece = boardState[row][col];

 if(selectedCell) {
 const {row: selRow, col: selCol} = selectedCell;
 const moveFound = possibleMoves.find(m => m.r===row && m.c===col);
 if(moveFound) {
 boardState[row][col] = boardState[selRow][selCol];
 boardState[selRow][selCol] = null;

 if(boardState[row][col].type==='P') {
 if((boardState[row][col].color==='w' && row===0) ||
 (boardState[row][col].color==='b' && row===7)) {
 boardState[row][col].type = 'Q';
 }
 }

 whiteToMove = !whiteToMove;
 }
 selectedCell = null;
 possibleMoves = [];
 renderBoard();
 checkGameEnd();
 return;
 }

 if(piece && ((whiteToMove && piece.color==='w') || (!whiteToMove &&
piece.color==='b'))) {
 selectedCell = {row, col};
 possibleMoves = generateMoves(row, col);
 renderBoard();
 highlightCells(possibleMoves);
 } else {
 selectedCell = null;
 possibleMoves = [];
 renderBoard();
 }
 }

 function highlightCells(moves) {
 moves.forEach(m => {
 const cellDiv =
document.querySelector(`[data-row='${m.r}'][data-col='${m.c}']`);

 if(cellDiv) {
 cellDiv.classList.add('highlight');
 }
 });
 }

 function checkGameEnd() {
 let whiteKingAlive = false;
 let blackKingAlive = false;

 for(let r=0; r<8; r++) {
 for(let c=0; c<8; c++) {
 const p = boardState[r][c];
 if(p && p.type==='K') {
 if(p.color==='w') whiteKingAlive = true;
 else blackKingAlive = true;
 }
 }
 }

 if(!whiteKingAlive) {
 document.getElementById('status').textContent = 'Schwarz gewinnt! Weißer
König ist geschlagen!';
 gameOver = true;
 } else if(!blackKingAlive) {
 document.getElementById('status').textContent = 'Weiß gewinnt! Schwarzer
König ist geschlagen!';
 gameOver = true;
 }
 }

 function renderBoard() {
 const boardDiv = document.getElementById('board');
 boardDiv.innerHTML = '';

 if(!gameOver) {
 document.getElementById('status').innerHTML =
 'Am Zug: ' + (whiteToMove
 ? 'Weiß'
 : 'Schwarz');
 }

 for(let r=0; r<8; r++) {
 for(let c=0; c<8; c++) {
 const cellDiv = document.createElement('div');
 cellDiv.classList.add('cell');

 if((r + c) % 2 === 0) {
 cellDiv.classList.add('white-cell');
 } else {
 cellDiv.classList.add('black-cell');
 }

 cellDiv.setAttribute('data-row', r);

 cellDiv.setAttribute('data-col', c);
 cellDiv.addEventListener('click', onCellClick);

 const piece = boardState[r][c];
 if(piece) {
 const pieceKey = piece.type + piece.color;
 cellDiv.textContent = pieceToUnicode[pieceKey] || '?';
 if(piece.color === 'w') {
 cellDiv.style.color = '#FFFFFF';
 } else {
 cellDiv.style.color = '#000000';
 }
 } else {
 cellDiv.textContent = '';
 }

 boardDiv.appendChild(cellDiv);
 }
 }
 }

 initBoard();
 renderBoard();
 </script>
</body>
</html>

