SCNACN

LANDESVERBAND OBEROSTERREICH

Der Schach Landesverband OO informiert

Schach Use Case fur ChatGPT:
Schach Spiel in ChatGPT selber programmieren

Einleitung:
Anleitung

Offne ChatGPT und sag: ,,Canvas: Erstelle eine neue
HTML-Datei.”

Fuge den kompletten Code in die Datei ein.
Speichern — die Canvas zeigt dir sofort die Vorschau.

Klicken, um zu spielen: Figur wahlen > Zielfeld
klicken.

Code kopieren:
Den Code findest du hier:

New - himl Kopieren Bearbeiten Herunterladen

Hinweis: Dieser Beitrag stellt keine Empfehlung dar, sondern spiegelt ausschlieBlich eine unverbindliche Einschatzung
wider. Es besteht keinerlei geschaftliche oder organisatorische Verbindung zu dem genannten Produkt. Der Schach-
Landesverband Oberdsterreich Ubernimmt keine Haftung flr etwaige Folgen oder Schaden.

enr schach.at " schach.at «™® schach.at «™" schach.at «" schach.at

<!DOCTYPE html>
<html lang="de">
<head>
<meta charset="UTF-8" />
<title>Schachspiel</title>
<style>
body {

}

display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
margin: 0;

padding: ©;

font-family: sans-serif;

hi {

}

margin-top: lrem;
margin-bottom: ©.5rem;

#status {

}

font-size: 1.2rem;
margin-bottom: 1lrem;
padding: ©.5rem lrem;
border-radius: 8px;
background-color: #f2f2f2;

#board {

}

display: grid;

grid-template-columns: repeat(8, 60px);
grid-template-rows: repeat(8, 60px);
gap: 0;

border: 2px solid #333;

.cell {

}

/* Hintergrundfarben, aber keine Font-Farbe:

width: 60px;

height: 60px;

display: flex;
align-items: center;
justify-content: center;
font-size: 3rem;

cursor: pointer;
user-select: none;

.black-cell {

}

background-color: #b58863;

.white-cell {

*/

background-color: #f2d9bl;
}

.highlight {
outline: 3px solid rgba(255, 255, 0, 0.7);
outline-offset: -3px;

}

.turn-indicator {
font-weight: bold;
color: #e60000;

}

#container {
margin: 1rem;
text-align: center;

}

</style>
</head>
<body>
<h1>Schachspiel fiir 2 Spieler</h1l>
<div id="status"></div>
<div id="board"></div>

<script>
// Unicode-Bauern (WeilR %, Schwarz 3}), Tirme (Weif Z, Schwarz £),
// Springer (WeiR %, Schwarz 4), Laufer (Weil &, Schwarz &),
// Dame (WeiRl %, Schwarz &), Konig (WeiR &, Schwarz &)

let boardState = [];

let whiteToMove = true; // true = WeiR am Zug, false = Schwarz am Zug

let selectedCell = null; // zuletzt angeklickte Zelle

let possibleMoves = []; // Liste von Zellen (row,col), auf die gezogen
werden kann

let gameOver = false;

// Unicode-Mapping fiir die Figuren
const pieceToUnicode = {
"Pw': "2', // WeiRer Bauer
'Pb': 'R ', // Schwarzer Bauer
'‘Rw': "Z', // WeiRer Turm

'Rb': 'x', // Schwarzer Turm
‘Nw': "a', // WeiBer Springer
‘Nb': "4', // Schwarzer Springer
'‘Bw': '2"', // WeiRer Laufer
'Bb': '&', // Schwarzer Laufer
‘Qw': ‘&', // WeiRe Dame

'Qb': 'w', // Schwarze Dame
"Kw': "&', // WeiBer Konig

'Kb': '#' // Schwarzer Konig

}s

// Standard-Setup

function initBoard() {
const initial = [

[{type:'R', color:'b'},{type:'N', color:'b'},{type:'B",
color:'b'},{type:'Q', color:'b'},{type:'K', color:'b'},{type:'B",
color:'b'},{type:'N', color:'b'},{type:'R', color:'b'}],

[{type:'P', color:'b'},{type:'P', color:'b'},{type:'P’,
color:'b'},{type:'P', color:'b'},{type:'P', color:'b'},{type:'P",
color:'b'},{type:'P', color:'b'},{type:'P', color:'b'}],

[null,null,null,null,null,null,null,null],

[null,null,null,null,null,null,null, null],

[null,null,null,null,null,null,null,null],

[null,null,null,null,null,null,null, null],

[{type:'P', color:'w'},{type:'P', color:'w'},{type:'P",
color:'w'},{type:'P', color:'w'},{type:'P"', color:'w'},{type:'P",
color:'w'},{type:'P', color:'w'},{type:'P', color:'w'}],

[{type:'R", color:'w'},{type:'N', color:'w'},{type:'B",
color:'w'},{type:'Q"', color:'w'},{type: 'K', color:'w'},{type:'B",
color:'w'},{type:'N', color:'w'},{type:'R", color:'w'}]

1;
boardState = initial;

}

function onBoard(r, c){
return (r >= 0 & r < 8 & c >= 0 & & c < 8);

}

function generateMoves(row, col, board = boardState) {
const piece = board[row][col];
if(!piece) return [];
const {type, color} = piece;
const directions = [];
const moves = [];

function sameColor(r, c){
return board[r][c] && board[r][c].color === color;

}

switch(type){
case 'P': // Bauer
if(color==="w"') {
if(onBoard(row-1, col) && !board[row-1][col]) {
moves.push({r: row-1, c: col});
if(row===6 && !board[row-2][col]) {
moves.push({r: row-2, c: col});
}
}
if(onBoard(row-1, col-1) && board[row-1][col-1] &&
board[row-1][col-1].color==="b") {
moves.push({r: row-1, c: col-1});
}
if(onBoard(row-1, col+l) && board[row-1][col+l] &&
board[row-1][col+1l].color==="b") {
moves.push({r: row-1, c: col+l});

}

} else {
if(onBoard(row+l, col) && !board[row+1][col]) {
moves.push({r: row+l, c: col});
if(row===1 && !board[row+2][col]) {
moves.push({r: row+2, c: col});
}

}
if(onBoard(row+l, col-1) && board[row+1][col-1] &&

board[row+1][col-1].color==="w") {
moves.push({r: row+l, c: col-1});

}
if(onBoard(row+l, col+l) && board[row+1][col+l] &&
board[row+1][col+l].color==="w") {
moves.push({r: row+l, c: col+1});
}
}
break;

case 'R': // Turm
directions.push({dr:1, dc:0}, {dr:-1, dc:0}, {dr:0, dc:1}, {dr:0,
dc:-1});
directions.forEach(dir => {
let r = row + dir.dr;
let ¢ = col + dir.dc;
while(onBoard(r, c)) {
if(!'board[r][c]) {
moves.push({r, c});
} else {
if(!sameColor(r, c)) {
moves.push({r, c});

}

break;

r += dir.dr;
c += dir.dc;

})s

break;
case 'N': // Springer
const knightMoves = [
{r: row+2, c: col+l},

{r: row+2, c: col-1},
{r: row-2, c: col+l},
{r: row-2, c: col-1},
{r: row+l, c: col+2},
{r: row+l, c: col-2},
{r: row-1, c: col+2},
{r: row-1, c: col-2}
1;
knightMoves.forEach(m => {
if(onBoard(m.r, m.c) & (!board[m.r][m.c] || !sameColor(m.r, m.c)))

moves.push({r: m.r, c: m.c});

}
})s

break;
case 'B': // Laufer
directions.push({dr:1, dc:1}, {dr:1, dc:-1}, {dr:-1, dc:1}, {dr:-1,
dc:-1});
directions.forEach(dir => {
let r = row + dir.dr;
let ¢ = col + dir.dc;
while(onBoard(r, c)) {
if(!'board[r][c]) {
moves.push({r, c});
} else {
if(!sameColor(r, c)) {
moves.push({r, c});

}

break;

r += dir.dr;
c += dir.dc;

1)

break;
case 'Q': // Dame
directions.push(
{dr:1, dc:0}, {dr:-1, dc:0}, {dr:0, dc:1}, {dr:0, dc:-1},
{dr:1, dc:1}, {dr:1, dc:-1}, {dr:-1, dc:1}, {dr:-1, dc:-1}
)
directions.forEach(dir => {
let r = row + dir.dr;
let ¢ = col + dir.dc;
while(onBoard(r, c)) {
if(!'board[r][c]) {
moves.push({r, c});
} else {
if(!sameColor(r, c)) {
moves.push({r, c});

}

break;

r += dir.dr;
c += dir.dc;

1)

break;
case 'K': // Konig
for(let dr=-1; dr<=1; dr++) {
for(let dc=-1; dc<=1; dc++) {
if(dr===0 && dc===0) continue;
let r = row+dr;
let ¢ = col+dc;
if(onBoard(r,c) &% (!board[r][c] || !sameColor(r,c))) {
moves.push({r, c});
b
¥
¥

break;

}

return moves;

}

function onCellClick(e) {
if(gameOver) return;

const cell = e.target;

const row = parseInt(cell.getAttribute('data-row'));
const col = parseInt(cell.getAttribute('data-col'));
const piece = boardState[row][col];

if(selectedCell) {
const {row: selRow, col: selCol} = selectedCell;
const moveFound = possibleMoves.find(m => m.r===row && m.c===col);
if(moveFound) {
boardState[row][col] = boardState[selRow][selCol];
boardState[selRow][selCol] = null;

if(boardState[row][col].type==="P")
if((boardState[row][col].color===
(boardState[row][col].color=

{
'w' && row===0) ||
=='b"
boardState[row][col].type = 'Q';

= && row===7)) {
¥
}

whiteToMove = !whiteToMove;
}
selectedCell = null;
possibleMoves = [];
renderBoard();
checkGameEnd();
return;

}

if(piece & ((whiteToMove && piece.color==='w') || (!whiteToMove &&
piece.color==="b"))) {
selectedCell = {row, col};
possibleMoves = generateMoves(row, col);
renderBoard();
highlightCells(possibleMoves);
} else {
selectedCell = null;
possibleMoves = [];
renderBoard();

}
}

function highlightCells(moves) {
moves.forEach(m => {
const cellDiv =
document.querySelector([data-row="'${m.r}'][data-col="${m.c}']);

if(cellDiv) {
cellDiv.classList.add("'highlight');
}
})s
}

function checkGameEnd() {
let whiteKingAlive = false;
let blackKingAlive = false;

for(let r=0; r<8; r++) {
for(let c=0; c<8; c++) {
const p = boardState[r][c];
if(p && p.type==="K"') {
if(p.color==="w"') whiteKingAlive = true;
else blackKingAlive = true;
}
}
}

if(!whiteKingAlive) {
document.getElementById('status').textContent
Konig ist geschlagen!';
gameOver = true;
} else if(!blackKingAlive) {
document.getElementById('status').textContent
Konig ist geschlagen!';
gameOver = true;

}

‘Schwarz gewinnt! WeiRer

'WeiB gewinnt! Schwarzer

}

function renderBoard() {
const boardDiv = document.getElementById('board');

boardDiv.innerHTML = K

if(!gameOver) {
document.getElementById('status').innerHTML =
"Am Zug: ' + (whiteToMove
? 'Weill’
'Schwarz');

}

for(let r=0; r<8; r++) {
for(let c=0; c<8; c++) {
const cellDiv = document.createElement('div');
cellDiv.classlList.add('cell");

if((r + ¢c) % 2 === 0) {
cellDiv.classlList.add('white-cell');

} else {
cellDiv.classlList.add('black-cell');

}

cellDiv.setAttribute('data-row', r);

cellDiv.setAttribute('data-col', c);
cellDiv.addEventListener('click', onCellClick);

const piece = boardState[r][c];

if(piece) {
const pieceKey = piece.type + piece.color;
cellDiv.textContent = pieceToUnicode[pieceKey]

if(piece.color === 'w') {
cellDiv.style.color = '#FFFFFF';
} else {
cellDiv.style.color = '#000000';
}
} else {
cellDiv.textContent = '';
}
boardDiv.appendChild(cellDiv);
}
}
}
initBoard();
renderBoard();
</script>
</body>

</html>

